带钢卷取温度高精度预报及多目标优化控制策略研究_孙铁军.caj

带钢卷取温度高精度预报及多目标优化控制策略研究
作 者 : 孙铁军
学位授予单位 : 北京科技大学
学位名称 : 博士
导师姓名 : 杨卫东
学位年度 : 2016
关键词 : 层流冷却;遗传算法;返祖;优生;转基因;基因库;Pareto前沿面
摘 要 : 在现代钢铁工业中,层流冷却工艺是通过轧后强制水冷来改善带钢的组织性能,提高带钢质量和产量的过程。带钢在层流冷却过程中发生复杂的水冷、空冷换热及内部的热传导过程,具有工况条件变化剧烈、强非线性、参数时变、数学模型难以精确描述的复杂工业特性,而且整个冷却区的恶劣环境不能逐点安装温度检测仪表,带钢温度难以连续检测,现有的控制方法存在不能适应变化频繁的工况条件、过于依赖带钢温度模型精度的问题,导致卷取温度控制精度不高、对给定冷却速率跟踪效果差。本文以某钢铁公司带钢热连轧生产线的层流冷却过程为研究对象,以提高带钢成品质量为目标,从温度预报模型优化和多目标优化控制策略研究两方面入手,将先进控制理论和改进的优化算法引入到生产实际中,提出了基于再进化遗传算法的相关性剪枝法(Re-evolutionary Genetic Algorithm-Correlation Pruning Algorithm,REGA-CPA)优化的BP神经网络卷取温度预报模型和基于转基因多目标遗传算法(Transgenic Multi Objective Genetic Algorithm, TMOGA)的层流冷却优化控制策略,并利用层流冷却过程实际生产数据进行了仿真实验研究,仿真结果验证了所提出温度预报模型的高精度和多目标优化控制策略的有效性。本文研究工作具体表现在以下几个方面:1)再进化遗传算法(REGA)现有诸多改进遗传算法(Genetic Algorithm,GA)终究只是在种群的正常进化过程中所采取各种策略,在设计理念上明显受到自然界生物自然进化思想的束缚,对由于种群进化过程中的盲目性、随机性而引起的退化现象明显应对措施不足,对克服GA收敛速度慢和易陷于局部最优等缺点的效果终究有限。基于此,本文在进化策略上另辟蹊径,提出了一种基于重新进化思想的REGA。其中,首次提出了重新进化的思想,用“返祖”操作找回丢失的较优模式并将其耦合至下一代种群中,极大的提高了算法的收敛速度;分析了“种群解的空间跨度”和“基因段距离”对种群多样性的影响,用“优生”操作来推动算法从平面到多维空间的立体式搜索,以勘探和挖掘出更广、更优的寻优区间,并在种群进化后期,强力驱动算法收敛于全局最优.2)基于REGA-CPA优化的BP神经网络卷取温度预报模型本文提出了一种基于REGA-CPA优化的BP神经网络卷取温度预报模型,“阶段性跨度淘汰法”主要是从保持种群多样性方面考虑,随时考量整个种群在平面空间的分布均匀性,以拓展搜索空间,使算法能够在更广、更优的区域寻优;“DNA鉴定法”从多维空间来考量种群在全局空间的寻优遍历性,为判断任意两个个体在多维空间的距离提供了直观、高效的方法。仿真结果表明:该卷取温度预报模型的收敛速度快、精度高,满足实时在线的控制要求,预报精度在±10℃范围之内,3)“随机动态输入模式”卷取温度预报模型的在线应用在离线方式下训练好的基于REGA-CPA优化的BP神经网络卷取温度预报模型为主模型,即可应用于在线的卷取温度预报。鉴于层流冷却系统是一个强耦合、强非线性、大滞后且滞后的时间时变的系统,因主模型权值、阈值、结构已固定,在线预报卷取温度时,若干点的精度有时可能会低于离线时训练的精度。针对此问题,提出了“随机动态输入模式”卷取温度预报模型,以最大限度的保证在线温度预报模型的预报精度在±10℃范围以内,能为层流冷却的预设定及前馈控制提供可靠的参考数据,从而为进一步提高卷取温度的控制精度提供了新的途径。4)转基因多目标遗传算法(TMOGA)提出了TMOGA,利用历代种群Pareto前沿面的交集来提取较优模式并建立基因库,库中的优秀基因通过“转基因”的方式移植到下一代种群,以保证种群进化稳步向Pareto最优解集迫近;基于决策变量的拥挤距离策略和基因库的竞争机制,保持了种群的多样性,使算法可以挖掘和勘探出更广、更优的搜索空间;随机抽取基因的模式保证了历代种群Pareto前沿面均具有良好的空间分布均匀性;基因库的记忆、固化功能形成强力驱动机制,使算法接近收敛时迅速跳出局部前沿,快速逼近真实的Pareto最优解集。5)基于TMOGA的层流冷却系统粗调区优化控制策略针对如何提高带钢卷取温度的控制精度和如何准确跟踪给定冷却速率的问题,提出了基于TMOGA的层流冷却系统粗调区优化控制策略,用于搜索粗调区集管的最佳开闭模式集合(Pareto最优解集);仿真结果表明,该多目标优化控制策略可获取全局Pareto最优解集且在空间分布均匀,所提供的决策变量丰富、合理,因此控制系统的控制范围广、精度高,对多目标的均衡能力强,从而为新钢种的开发、冷却工艺优化提供了强有力的技术手段,同时为发展高端、高附加值的带钢产品打下了坚实的基础。

      • 温馨提示:
      • 在微信、微博等APP中下载时,会出现无法下载的情况
      • 这时请选择在浏览器中打开,然后再请下载浏览
361图书馆,资源府邸,学习的天地
361图书馆 » 带钢卷取温度高精度预报及多目标优化控制策略研究_孙铁军.caj

Optimized by WPJAM Basic